If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+10t=-80
We move all terms to the left:
-4.9t^2+10t-(-80)=0
We add all the numbers together, and all the variables
-4.9t^2+10t+80=0
a = -4.9; b = 10; c = +80;
Δ = b2-4ac
Δ = 102-4·(-4.9)·80
Δ = 1668
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1668}=\sqrt{4*417}=\sqrt{4}*\sqrt{417}=2\sqrt{417}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{417}}{2*-4.9}=\frac{-10-2\sqrt{417}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{417}}{2*-4.9}=\frac{-10+2\sqrt{417}}{-9.8} $
| 2u+30=66 | | 2x+9=1x+-3 | | 5x-8/x+2=5-6/x-2 | | 2b+5=b+6 | | 50x-3x=x-26 | | 3+m=27 | | -4.9t^2+10t=80 | | 3x+7x-2=3x-7x+2 | | 2x-13+x=122 | | 26x+2+x+20x=180 | | 2(x-3)+3x+7=2x+19 | | 16x+6+11x+6+x=180 | | 9x^2–18=7 | | 36=-9(n-98) | | 20(x–11)=–20 | | 48,797+11.25x=23,541+18.25x | | 7x+4+9x+x=180 | | -11=16-(-9r) | | 52-u=8 | | 37+98+x=180 | | 0.5+2=6x-64 | | 1=t-89/6 | | 5x-8/x=2=5-6/2x | | 3(v-62)=51 | | 3x²-6x+27=0 | | 8x+9=41+4x | | 2(x-2)+4x=-16 | | 2(3x-2)=4(x-2) | | 0.60x=60+0.10 | | 50=m*59 | | 35=h-13 | | 76+66+x+45=180 |